Improving Displacement Signal-to-Noise Ratio for Low-Signal Radiation Force Elasticity Imaging Using Bayesian Techniques.

نویسندگان

  • Douglas M Dumont
  • Kristy M Walsh
  • Brett C Byram
چکیده

Radiation force-based elasticity imaging is currently being investigated as a possible diagnostic modality for a number of clinical tasks, including liver fibrosis staging and the characterization of cardiovascular tissue. In this study, we evaluate the relationship between peak displacement magnitude and image quality and propose using a Bayesian estimator to overcome the challenge of obtaining viable data in low displacement signal environments. Displacement data quality were quantified for two common radiation force-based applications, acoustic radiation force impulse imaging, which measures the displacement within the region of excitation, and shear wave elasticity imaging, which measures displacements outside the region of excitation. Performance as a function of peak displacement magnitude for acoustic radiation force impulse imaging was assessed in simulations and lesion phantoms by quantifying signal-to-noise ratio (SNR) and contrast-to-noise ratio for varying peak displacement magnitudes. Overall performance for shear wave elasticity imaging was assessed in ex vivo chicken breast samples by measuring the displacement SNR as a function of distance from the excitation source. The results show that for any given displacement magnitude level, the Bayesian estimator can increase the SNR by approximately 9 dB over normalized cross-correlation and the contrast-to-noise ratio by a factor of two. We conclude from the results that a Bayesian estimator may be useful for increasing data quality in SNR-limited imaging environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the quality of ultrasound images using Bayesian estimators

Medical ultrasound imaging due to close behavior of cancer tumors to body tissues has a low contrast. This problem with synthetic aperture imaging method has been addressed. Although the synthetic aperture imaging technique solved the low-contrast problem of ultrasound images, to an acceptable limit, but the performance of these methods is not even acceptable when the signal to noise ratio (SNR...

متن کامل

Elastographic imaging using staggered strain estimates.

Conventional techniques in elastography estimate strain as the gradient of the displacement estimates obtained through crosscorrelation of pre- and postcompression rf A-lines. In these techniques, the displacements are estimated over overlapping windows and the strains are estimated as the gradient of the displacement estimates over adjacent windows. The large amount ofnoise at high window over...

متن کامل

Non-uniformity of Clinical Head, Head and Neck, and Body Coils in Magnetic Resonance Imaging (MRI)

Introduction Signal intensity uniformity in a magnetic resonance (MR) image indicates how well the MR imaging (MRI) system represents an object. One of the major sources of image non-uniformity in high-field MRI scanners is inhomogeneity of radio-frequency coil. The aim of this study was to investigate non-uniformity in head, head and neck, and body coils and compare the obtained results to det...

متن کامل

Corrections to the displacement estimation based on analytic minimization of adaptive regularized cost functions for ultrasound elastography.

Ultrasound elastography has been widely applied in clinical diagnosis. To produce high-quality elastograms, displacement estimation is important to generate ne displacement map from the original ratio-frequency signals. Traditional displacement estimation methods are based on the local information of signals pair, such as cross-correlation method, phase zero estimation. However, the tissue move...

متن کامل

A Decision between Bayesian and Frequentist Upper Limit in Analyzing Continuous Gravitational Waves

Given the sensitivity of current ground-based Gravitational Wave (GW) detectors, any continuous-wave signal we can realistically expect will be at a level or below the background noise. Hence, any data analysis of detector data will need to rely on statistical techniques to separate the signal from the noise. While with the current sensitivity of our detectors we do not expect to detect any tru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ultrasound in medicine & biology

دوره 42 8  شماره 

صفحات  -

تاریخ انتشار 2016